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Lattice nets have one vertex in the topological unit cell. Some two- and three-

periodic lattice nets with one kind of edge (edge-transitive) are described.

Simple expressions for the topological density of the two-periodic nets are found

empirically. Thirteen infinite families of three-periodic cubic lattice nets and

hexagonal, trigonal and tetragonal families are identified.

1. Introduction

A lattice net is here defined as a periodic net that has just one

vertex in the repeat unit so that in a maximum-symmetry

embedding the vertices fall on a lattice. In the simplest cases

the edges correspond to shortest lattice vectors. In other cases

the edges may correspond to longer lattice vectors; a simple

three-periodic example with RCSR symbol (O’Keeffe et al.,

2008) ilc was given by Delgado-Friedrichs & O’Keeffe (2005).

Nets in which edges do not correspond to shortest distances

between vertices are becoming increasingly important in

crystal chemistry; see for example the net tcb (Delgado-

Friedrichs et al., 2005). In this paper attention is focused on

lattice nets in which all edges are equivalent (edge-transitive);

of course, in lattice nets all vertices are equivalent so these

nets are semiregular in the classification of Delgado-Friedrichs

et al. (2003).

Before considering the periodic structures it is instructive to

look at a finite example. If we take a figure with vertices at the

positions of the vertices of a regular dodecahedron and

second-nearest-neighbor vectors as edges, we obtain a figure

of five concentric cubes with each vertex common to two cubes

(Fig. 1).1 As each cube is a 43 tiling we could consider the

structure as a fivefold 43 tiling of a sphere (S2) and write the

two-dimensional vertex figure of the assembly as (43)2. The

structures we examine next correspond to analogous multiple

tilings of the plane (E2).

2. Two-periodic nets

2.1. Square nets

We consider first nets based on the square lattice with

symmetry p4mm with edges from 0,0 to u,v with u � v. u,v =

0,1 corresponds to the familiar 44 net of the square lattice. For

all the lattice points to be vertices of a unique net then it is

easy to show (see Appendix A) that (a) u and v must be co-

prime (have no common divider other than 1), (b) u + v 6¼ 2n

(where n is an integer), (c) u < v.

The net for u = 1, v = 2 corresponds to vertices arranged as

the nodes of a square lattice and edges corresponding to a

knight’s moves on a chess board (every chess player knows

that the knight can visit every square). It is illustrated in Fig. 2,

which illustrates the structure as ten superimposed 44 tilings in

Figure 1
Five concentric cubes (each colored differently) with vertices at the
positions of the vertices of a regular dodecahedron.

Figure 2
The square net with u,v = 1, 2 edges, showing (a) square and (b)
rhomboidal tiles. Separate tilings are outlined in different colors.

1 For an alternative description of this figure as the uniform polyhedron 3/2 | 3 5,
see Coxeter et al. (1954).



which the vertices and edges of the tiles are vertices and edges

of the graph. Each vertex belongs to two tilings so the vertex

symbol is written as (44)2. The tiling is self-dual. Instead of ten

square tilings, the same structure could be generated from a

superposition of eight 44 tilings by rhombic tiles as also shown

in Fig. 2. In general the u,v structure will require 2(u2 + v2)

coverings by square 44 tilings. Note that the set of vertices and

edges of all the tilings are the vertices and edges of just one net

(by definition a connected graph).

Considered as a layer, the combinatorial symmetry of the

nets is p4mm, but there is not a faithful embedding with this

symmetry as all edges would be confined to one plane and

would intersect. They are therefore examples of nets that are

two-periodic but not planar (in the graph-theoretic sense).

Interest in edge- and vertex-transitive nets arises in part

from an interest in ways of linking simple symmetrical

geometrical shapes by one kind of linker (Delgado-Friedrichs

et al., 2007). In the present case, if the vertices are replaced by

vertex figures (a process called augmentation; Delgado-

Friedrichs et al., 2003), one obtains ways of linking octagons by

one kind of link; Fig. 3 shows a fragment of the augmented u,v

= 1,2 structure. Considered as a three-dimensional structure,

the vertex symbol is 8.124.125 with the subscripts showing that

there are four and five dodecagons that are the shortest rings

at two of the angles; the fact that there are more than one

indicates that the net is non-planar.

2.2. Hexagonal nets

An analogous family of 12-coordinated structures is based

on the hexagonal lattice (36) and has symmetry p6mm with

edge from 0,0 to u,v. Now the conditions for every lattice

point being on a unique single net are (a) u,v co-prime, (b) u +

v 6¼ 3n (where n is an integer), (c) u < v� u. A fragment of the

net with u,v = 1,3 is shown in Fig. 4. The structure is derived

from 14 superimposed 36 tilings, two of which are emphasized

in the figure. In the general case there are 2(u2
� uv + v2)

superimposed tilings with each vertex common to two tilings,

so the vertex symbol can be expressed as (36)2.

The duals of the hexagonal structures have two vertices in

the unit cell and are derived from a superposition of multiple

honeycomb (63) nets. The dual of the net with u,v = 1,3 is also

shown in Fig. 4. Each vertex is six-coordinated and belongs to

two tilings by regular hexagons; accordingly, the vertex symbol

for this net can be written (63)2. These are not lattice nets as

there are two vertices in the primitive unit cell.

2.3. Coordination sequences

Coordination sequences have been determined for all

square lattice nets with v � 15. It is found in every case that

after a certain number, m, of shells the number in the kth shell

is given by nk = ak + b (where a and b are fixed integers), with

m generally increasing with the magnitude of u and v (for u,v =

14,15, m = 53). The cumulative number of topological neigh-

bors of a vertex approaches ak2/2 as k!1; a/2 is known as

the topological density of the net (O’Keeffe, 1991).

The value of a is of some interest. First it is noted that an

elementary result in number theory (e.g. Tattersall, 1999) is

that u and v, restricted as indicated above, lead directly to the

integral solutions of r2 + s2 = t2, giving the sides, r, s and t, of

primitive Pythagorean triangles. Specifically, r = v2
� u2, s =

2uv, t = v2 + u2. What is of interest in the present connection is

that it is found, by inspection, in every case that a/4 = r + s =

v2 + 2uv � u2.

These last numbers (a/4) are also of interest as they are the

numbers with prime factors �1 (mod 8) (see e.g. http://

www.research.att.com/~njas/sequences/A058529).

As for square nets, after a certain number of shells the

coordination sequence for hexagonal lattice nets settles down

to a linear expression, nk = ak + b. Again there is a connection

with triangles with integral edges. If, instead of considering

triangles with a 90� angle, Pythagoras had investigated trian-

gles with a 120� angle, he would have found that the length of

the longest side, t, is related to the lengths of the shorter sides,

r and s, by r 2 + rs + s2 = t 2. Primitive integral solutions of this

equation with r, s, t positive are now given in terms of u and v
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Figure 3
The augmented net of Fig. 2 with three linked octagons shown in red.

Figure 4
(a) The hexagonal net with u, v = 1, 3 edges. Two sets of triangular tiles are
shown in red and green. (b) The net dual to that in (a) with two sets of
hexagonal tiles shown in red and green.



restricted as in (a)–(c) above as r = v2
� 2uv, s = 2uv � u2, t =

u2 + v2
� uv.2 It is found, again by inspection, that a/6 = r + s =

v2
� u2. More than one triangle exists for a given r, s or t but a

particular r + s appears to only occur for one u,v so each net

appears to have a unique topological density (a/2).

These numbers (a/6) are also known as the sequence of

sides of a primitive equilateral triangle bearing at least one

integral cevian that partitions an edge into at least two integral

sections (http://www.research.att.com/~njas/sequences/

A089025).

3. Three-periodic nets

3.1. Cubic

Clearly, as there is only one vertex in the unit cell, the only

possible cubic symmetries are those of the six centrosymmetric

symmorphic groups. Consider first a primitive cubic lattice

with points that are all possible triplets of integers. Now

consider edges from 0,0,0 to u,v,w and their symmetry-related

counterparts. For a unique structure, u, v and w must be co-

prime, and for convenience u � v � w. Then there are three

possibilities for the parities of u, v and w:

(a) One odd. All lattice points are on the structure which is

therefore P.

(b) Two odd. Only lattice points whose coordinates add up

to an even number are selected and these fall on an F lattice.

(c) Three odd. Only lattice points whose coordinates are all

odd or all even are selected and these fall on an I lattice.

In the last two cases, using conventional centered cubic

cells, the edges are from 0,0,0 to u/2,v/2,w/2, and coordinates

of points are multiples of 1/2.

Special cases are 0,0,1 ! pcu, 0,1,1 ! fcu, 1,1,1 ! bcu

(edges corresponding to shortest vectors of the primitive, face-

centered and body-centered cubic lattices, respectively).

Apart from these there are 13 different infinite families, listed

in Table 1.

As in the two-periodic case, the structures can be consid-

ered as being derived from multiple tilings of space, now by

parallelepipeds as suggested by Fig. 5. The vertices of the 12-,

24- and 48-coordinated structures belong to 2, 4 or 8 tilings,

respectively. Note, however, that, in contrast to the two-

periodic case, the tiles cannot be regular (cubes).

The augmented nets provide ways of linking polyhedra by

one kind of link. Fig. 6 shows the case of the augmented Pm�33m

0,1,2 structure (for all edges unity, a = 1.8614, x = 0, y =

0.37987, z = 2y) in which truncated octahedra are so linked.

3.2. Hexagonal

There is an infinite family of 24-coordinated edge-transitive

lattice nets with symmetry P6/mmm. Edges are from 0,0,0 to

u,v,1 where u and v are subject to the same constraints as for

the two-periodic hexagonal nets. There is a special case of a

12-coordinated net with u = 0, v = 1. These nets have not been

investigated in any detail.

3.3. Trigonal

There is an infinite family of 12-coordinated edge-transitive

lattice nets with symmetry P�33m1. Edges are from 0,0,0 to

u,v,1, where u and v are subject to the same constraints as for

the two-periodic hexagonal nets. The special case of u = 0, v =

1 is the P6/mmm net mentioned above.

There is also an infinite family of 12-coordinated edge-

transitive lattice nets with symmetry R�33m. Edges are from

0,0,0, to n + 2/3,1/3,1/3 (R-centered hexagonal cell), where n is

an integer. Again these nets have not been investigated in any

detail.
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Table 1
The 13 possibilities for cubic lattice nets by crystal class.

Point group Edges Coordination Lattices

m�33m 0, v, w 24 P, F
u, u, w 24 P, F, I
u, v, w 48 P, F, I

�33m 0, u, w 12 P, F
u, v, w 24 P, F, I

Figure 5
Two tiles (outlined in red and blue) of the Pm�33m 012 net.

Figure 6
The augmented Pm�33m u, v, w = 0,1, 2 net.

2 Presumably this is a well known result but it has not been found given
explicitly.



3.4. Tetragonal

In contrast to the hexagonal case there appear to be no

edge-transitive lattice nets with P4/mmm symmetry. This is

because with primitive tetragonal nets and edge vectors of the

type u,v,1 and symmetry equivalents, a path from 0,0,0 to 0,1,0

cannot be produced. This is a direct consequence of the fact

that, in the two-periodic square case, to go from 0,0 to 0,1 by a

sequence of steps u,v and symmetry equivalents always

requires an odd number of steps.

There is, however, a family of 16-coordinated edge-

transitive lattice nets with symmetry I4/mmm. With the

conventional (centered) cell the edge vectors are from 0,0,0 to

u/2,v/2,1/2 with u and v both odd and u > v. Again these nets

have not been investigated in any detail.

4. Concluding remarks

This paper calls attention to the fact that there are infinite

families of edge- and vertex-transitive nets. We do not claim

that the listing here is complete, but we mention that the

existence of nets of the types cited have been verified using

the program Systre (Delgado-Friedrichs & O’Keeffe, 2003;

program available at http://www.gavrog.org/). We have

focused on lattice nets, but, as the example of (63)2 in x2

showed, there are also other families of vertex- and edge-

transitive nets. There are in fact two three-periodic edge- and

vertex-transitive nets identified in RCSR other than the

semiregular nets of Delgado-Friedrichs et al. (2003). These are

lcx and lcz; the edges correspond to second-neighbor distances

in the most symmetrical embeddings of nets lcw and lcy,

respectively. Clearly there are many more, and one can

confidently predict that some at least will become important in

crystal chemistry in the future.

APPENDIX A
Conditions for u and v in x2.1

Here we show that the conditions in x2.1 are sufficient to

produce a connected graph. One of u,v is odd; for the moment,

let u be odd. Now consider the path starting at 0,0.

First step u,v.

Then p pairs of steps u,v; u,�v.

Then q pairs of steps �v,u; �v,�u.

Then (u � 1)/2 pairs of steps u,v; �u,v.

Then v/2 pairs of steps v,�u; �v,�u.

The finishing point is x,y = (2p + 1)u � 2qv,0. As u,v are

co-prime there are always integers p and q such that x = 1

(Tattersall, 1999). If there is a path to 1,0, by symmetry there is

a path to 0,1 and there is a path to all lattice points. If v is odd,

interchange u and v in the above.

Work on nets and tilings at ASU is supported by the US

National Science Foundation (grant number DMR 0804828).
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